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Methods are described that allow for an efficient evaluation of two-electron integrals over con- 
tracted Gaussian lobe functions. The improvement in computational speed is achieved by avoiding 
the computation of integrals that are: 1. sufficiently small on numerical reasons, 2. zero by symmetry, 
3. identical to other integrals by symmetry. Examples of the effectiveness of these techniques are 
included. We also report the timings for a further processing of two-electron integrals in a Hartree- 
Fock and correlation energy computation. 
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Introduction 

At present most  ab initio computat ions on polyatomic molecules are per- 
formed in using contracted Gaussians as basis set. The bottleneck of these cal- 
culations is usually the evaluation of two-electron integrals. The computer  time 
required for this step can - as is well known - be reduced by the use t~f sym- 
metry. A further reduction is possible, especially in the case of large molecules, 
if one takes advantage of the fact that a rather large fraction of the two-electron 
integrals is negligibly small and needs not be evaluated at all [1]. Clementi [2] 
has demonstrated that the computer  time can be reduced by a factor 100, in the 
case of the cytosin-guanine complex, if one avoids the evaluation of sufficiently 
small integrals. This progress has been achieved by the introduction of an 
"adjoined" basis and an effective testing algorithm which before the actual 
integral calculation establishes whether a two-electron integral can be approxi- 
mated by using the adjoined basis or can be neglected entirely [2]. In a more 
recent publication [3] Clementi notes without further explanation that he has 
meanwhile abandoned the idea of an adjoined basis, which is, however, used 
successfully by other workers [4]. We shall comment  on this subsequently. 

In this paper  we give a brief description of some methods developed by the 
present author which appear  to be even more efficient than those described by 
Clementi [2], at least for medium size basis sets. Our  program differs from other 
existing integral programs mainly in th e way in which we avoid the computat ion 
of small integrals, whereas other features like the use of symmetry are similar in 
other existing programs. 

In addition to the description of the integral evaluation we point out some 
problems connected with the use of adjoined basis sets. We also make a few 



158 R. Ahlrichs 

comments on the further processing of the integrals in the SCF-program and in 
the computation of correlation energies. 

Organization 

As basis functions qb we use linear combinations of Gaussian lobe functions 

q)I = 2 c i z i ,  )~i(~') = (2tli/Zr) 3/4 exp(-- t/i(r -- vi)2). (1) 
i 

The q~ are also referred to as contracted Gaussians or groups of Gaussians 
(throughout this paper we lable groups by capitals and lobes by small letters). 
Basis functions of p-, d-, f-type are then constructed from 2 or more lobes, see 
e.g. [5, 6]. The use of Gaussian lobes has the advantage that one has to deal with 
a single type of integral only, which is easily coded in an efficient way. 

A two-electron integral 

1 
(IJIKL) = S ~~ (~0j(rl) 

F12 
q)ir q)L(r2) dzl d'c2 

may be written in the following form: 

( IJ IKL)  = ~, tkl ~, tij B 1/2 F(B(r i j -  rkl)2), (2) 
kl ij 

t i j .=c ic j~z i ) ( , jd .c~-c ic j (41 , ] i l~ j )3 /4( t l i+Yl j ) -3 /2exp(  I~il~j (ri- ~'j)2), (3) 
r h r i + tlj rj (4) 

i'ij -- 
~h +~j 

B = (qij + q~t)- a, (5) 

qij = (Yh -4- ~]j)- 1 (5a) 

F(x) = x-  1/2 erf(xl/2). (6) 

where eft(x) denotes the error function. 
The integrals are computed in an order which to the author's knowledge has 

first been proposed by Meyer [7]. The loops run over I _  J_> K _  L, and for a 
quadruple ( IJKL)  one then computes the integrals (IJ [KL), (IK[ JL) if J > K, 
( IL[JK) if I > J and K > L. If the integrals are obtained in this order it is an 
easy matter to construct the Roothaan supermatrices [8] ~, J ,  or oY, as is shown 
below. (For the subsequent considerations it is not of too great importance in 
which order the integrals are obtained.) 

It is obvious from Eq. (2) that a fast integral evaluation would be extremely 
easy if the quantities t~j, r~j, and q~j could be kept in storage for all i and j. The 
storage requirement for such a procedure is prohibitive, however. Most time- 
consuming is the evaluation of the tlj. To avoid a permanent recomputation of 
these quantities, we devide the t~j into blocks of appropriate length and keep 
only those blocks in storage which are currently needed. The corresponding 
blocks are recomputed whenever they are needed. (The quantities vii and V u to 
be defined below are treated in the same way.) The core storage available for the 
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integral routine is provided as an input parameter and a dynamic storage alloca- 
tion is performed to make efficient use of the core storage. 

Let us now consider the quantities ru, rkt , q~j, and qk~ needed to evaluate 
(IJIKL).  (The computation of ( IK I JL) and (ILl JK) i s  analogous.) After I and 
J are specified we get and store the rij and qu for i t  I and j s J. For the actual 
integral evaluation we first start the loops over k, l and get the r~z, qu after k 
and I are specified. The innermost loop then runs over the combined index (ij). 
Proceeding this way, we have available all quantities occuring in (2) before the 
innermost loop (over ij) starts and no redundant computations have to be per- 
formed in that loop. The integrals (IJIKL),  (IKIJL),  and ( ILIJK)  are kept on 
tape together with the lable ( IJKL)  provided at least one of the integrals is larger 
than the cut off threshold T, as is outlined below. 

Test on the Magnitude of the Integrals 

It has already been pointed out by several authors that a rather large fraction 
of the integrals is essentially zero in the case of large molecules [1, 2]. In order 
to avoid the unneccessary computation of small integrals ( IJIKL)  and the com- 
putation of small contributions to the larger integrals an effective testing 
algorithm is of great importance. 

First, we note that F(x) is a slowly varying function of x, for this reason it 
does not pay to perform a test on x or F(x). Next, we observe that 

B = (qij + qkl) -1 < (4qlj qkl)- X/2. 

If we then introduce the quantities 

= tt, L �9 1 4, (7)  

we obtain the following rigorous estimate for the individual contributions to 
(IJ}KL), see Eq. (2) (note that F(x)< 2n-~/2): 

[tutuB1/2F(B(r~2- rk,)2)[ 5 (2/n)+l/ZUuUkl. (8) 

This estimate cannot be improved in general since the equality sign holds if 
qi j  = qkt a n d  riy = rkt. 

In our program we avoid the unnecessary computation of small two-electron 
integrals in neglecting consistently all contributions which are smaller than a 
certain threshold T, i.e. we neglect all terms on the r.h.s, of Eq. (2) for which 
Uij Ukl ~ r 

It is more convenient, however, to consider the logarithms of the corres- 
ponding quantities: 

v u = In (uu) (9) 

VH = max vi~ (10) 
U 

V M  = max V;s (11) 
IJ 

(12) I T  = ln(T). 
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The quantities defined in (9)-(12) may now be truncated to integers, which can 
be stored in half words. 

With the aid of the quantities vij, VH, and V M  it is then possible before the 
actual integral computations to establish whether or not one has to expect 
"non zero" contributions at all. 

If 
V u + V M  < I T  (13) 

one can skip the evaluation of the integrals ( I J IK 'E)  for arbitrary K', L', since 
no contribution larger than T occurs in any of these integrals. 

If 
VII + VKL < I T  (14) 

the integral (1JIKL)  is set equal to zero. 
If 

Vkl + VIs < 1 T  (15) 

one can skip for the current kl the whole sum over / j  in the actual computation 
of ( IJIKL) ,  see Eq. (2). 

Finally, if 
Vkl -~ Uij < I T 

one neglects the corresponding contribution (ijlkl) to ( IJIKL) .  We thus see that 
the use of the quantities vij, V u and V M  enables us to check at any stage of the 
integral computation whether or not a subsequent loop has to be entered at all. 

The appropriate value for the threshold T has to be determined by computer 
experiments. The dependence of EscF on the cut off threshold T is shown in 
Table 1 for a series of C2H4 computations. 

These data show, that A Esc F - the error of the SCF energy which is due to 
the neglect of small integrals - is always smaller than 10. T. 

Table 1. Dependence of the SCF energy of C 2 H  4 (exp geometry) on the integral cut off threshold T. 
Basis set: C(8,4/4,2), H: (4/2 i 

l o g T  - 8 . 1  - 7 . 2  - 6 . 4  - 5 . 5  - 4 . 7  

Esc  v - 7 7 . 9 9 4 4 6 6  - 7 7 , 9 9 4 4 6 6  - 7 7 . 9 9 4 4 6 5  - 7 7 . 9 9 4 4 5 5  - 7 7 . 9 9 4 3 6 1  

Number of Integrals to be Computed in Large Molecules 

The basic idea of the above checking algorithm can be used to estimate the 
total number of two-electron integrals to be actually computed in large molecales. 
For  this purpose we consider a series of computations for molecules A. with an 
arbitrary but fixed basis set for the fragments A. 

The only requirement on the structure of A n is that the distance between any 
two fragments Ai and Aj exceeds an arbitrary but fixed distance r o. 



Evaluation of Integrals for Gaussian Type Basis Sets 161 

If we now want to compute only those integrals that are larger than a certain 
threshold T, we have to consider only the charge distributions Zi;~j for which 

v u + V M  > I T .  (16) 

The number of pairs (i j) of Gaussian lobes which fulfill (16) increases only linearly 
with n (the number of fragments) for sufficiently large n. This follows immediately 
from the definition of v u, see (9)-(11), and from the above requirement on the 
structure of A, (note that V M  does not depend on n, since we keep the basis 
for A fixed). As the number of pairs of lobes XCX~ for which (16) holds increases 
only linearly with n, we conclude that the number of two-electron integrals larger 
than T increases only like n 2. We note that the above reasoning holds also for 
Slater type basis functions. 

A similar analysis has recently been published by Dyczmons [9]. He showed 
(under essentially the same conditions as above) that the computer time increases 
like n z (ln n) 2 if one neglects small integrals in such a way that the sum of absolute 
values of neglected integrals remains smaller than T. We note without proof that, 
for the case investigated by Dyczmons, the number of two electron integrals 
increases in fact only like n 2 lnn and not like n 2 (lnn) 2. 

A Problem Connected with the Use of "Adjoined" Basis Sets 

Let us consider an integral ( S a S b l S c S c )  where Sa, Sb, Sc are identical S groups 
at the respective centers a, b, c. Let rab denote the distance between centers a and b. 
We now want to approximate  (SaSb IScSc )  by a corresponding integral over 
adjoined orbitals S. 

(SaSblScSc) ~ ( S a S b l S c S c )  . (17) 

It is then easily verified by inspection that the correct dependence of ( S a S b l S c S c )  
on rab can only be reproduced if S contains the term c 1 Z1, where Z1 is the lobe 
with smallest orbital exponent t /occuring in the group and c 1 the corresponding 
contraction coefficient. 

As the integral contains the charge distribution (Sc) 2 one has also to require 
that S has approximately the same norm as S: Ibslh--Ilsll. In order that (17)is in 
error by not more than 10 % we thus have to put in general 

= q ;~ + cz ,  (18) 

where c and )~ may be chosen to maximise I sl >l under the constraint [Isll = ILsll. 
The above consideration shows conclusively that two primitive Gaussians are 

needed to construct the adjoined orbitals. If one wants to use a single primitive 
Gaussian only, one must choose S = c~ Zl, but then - for the case under con- 
sideration - one can replace only Sa and Sb by Sa and Sb but not Sc by Sc, i.e. 
one can only use 

( S a S b I S c S c ) ~ ( S a S b [ S c S c ) .  

It is probably for the reasons just discussed that  Clementi has abandoned the idea 
of the adjoined basis set and just neglects integrals smaller than a certain 
threshold [3]. 
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Evaluation of F(x) 

For  a fast evaluation of the function F(x) defined in Eq. (6) we use a rational 
Tchebycheff approximation in small intervalls 

F(x)~ ' (x)=(ai+bix+cix2) / (d i+x) ,  xi<=x<=xi+ 1 . (19) 

As the accuracy of (19) varies considerably with the location of the intervall 
(x~, x~+l), it is advantageous to use a variable intervall length. We have put xl = Dji, 
i.e. xi+ 1 - x  i =D(j i+I - J i )  is always a multiple of a basic intervall D. The para- 
meters j~ are determined in the following way: for a given jg (starting with j~ = 0) 
we choose Ji+l as large as possible under the provision that (19) has a prescribed 
accuracy. This procedure is continued until F(x)= x -1/2 is sufficiently accurate. 

In order to evaluate F(x) we have to store besides the coefficients a i -  d~ an 
integer vector i(]) which is needed to recover i for the actual j = [_x/D] + 1. 

If one requires an accuracy of 5 .10-13  for (19) one needs 1688 basic intervalls 
of length D=0.0148 and 387 intervalls (x~,x~+~), reducing the accuracy to 
5 .10  - l~  the corresponding numbers are 533 and 127. 

Use of Symmetry 

a) Parity Check 

A set of idempotent symmetry operations (reflections, inversions, 180 ~ rota- 
tions etc.) are considered, which are not required to belong to the symmetry group 
of the molecule. It is then established for each group of Gaussians whether it 
has even parity, odd parity or no parity at all with respect to each of these sym- 
metry operations. After I, J, K, L are specified in the integral routine we check 
whether or not cp I �9 cpj. Or" cPL has odd parity with respect to one of the symmetry 
operations. If this is the case all three integrals (IJIKL), (IK I JL) and (IL I JK) 
vanish and their computation is skipped. 

In order to make efficient use of this program feature it is important to choose 
the basis set (e.g. the direction of p-orbitals) in an appropriate manner. 

b) Redundancy of Integral Values 

Symmetry is used further to avoid the redundant computation of integrals 
over groups which are equal in value (possibly with a factor - 1) on symmetry 
grounds. In the present program version we consider just one two fold symmetry 
operation. This feature can also be used if a symmetry operation maps just a part 
of the total basis set into itself. 

Let I', J', K', E denote the lables into which /, J, K, L are mapped by the 
symmetry operation. The integrals (1JIKL), (IKIJL) and (IL[JK) are computed 
only if ( IJKL)> (I' J '  K'/2), i.e. if I J K L  succeeds I'J' K'L' in the loops. The three 
integrals corresponding to I', J', K', L' (which are essentially identical to chose 
obtained for I,J,K,L) are also kept together with their label I 'J 'K'E. In principle 
it is not necessary to keep the redundant integrals, but in the treatment of cor- 
relation energies we have to deal with density matrices which are not totally 
symmetric with respect to molecular symmetry and this case is handled in a more 
convenient way if all non zero integrals are kept on tape. 
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The check whether or not (IJKL)>(I'J'K'E) can already be performed 
partly in the outer loolOs, i.e. before I, J, K, and L are specified. If I' > I, it follows 
that (I'J'K'I2)>(IJKL) and no integrals are computed for the current L We 
can thus skip the entire loops over J, K, L etc. 

Integral Computation Times 

In Table 2 we present some typical computational times for the evaluation 
of two-electron integrals. The program is written in FORTRAN V for the Univac 
1108 and uses double precision floating point arithmetic (72 bit) throughout. 
A single precision version would require about 60 % of the time given in the 
table. 

For a comparison with the timings given by Clementi [2] we make the 
following comments: 

a) The IBM 360/195 is about 12-20 times faster than the Univac 1108. 
A comparison of different computers is nevertheless rather problematic. 

b) The programs compared in Table 2 use different methods to avoid the 
computation of small integrals. As the integral time may depend crucially on the 
cut off threshold, a comparison of different programs is meaningfull only if the 
integrals are obtained with comparable accuracy. For the computations reported 
in Table 2 we employed a cut off threshold T = 10-7, which in all cases inves- 

Table 2. Examples of integral computation times 

Molecule Basis Number of Storage a Geometry Time b Other work 
lobes groups 

C2H 2 C(7,3,114,2,1) 106 40 50K exp 6.4 - -  
H(3,112,1) 

CzH4 C(7,3,114,2,1) 124 50 50K exp 22.4 - 
H(3,112,1) 

Na+(H20)2 Na,O(7,312,1 ) 87 19 50K linear ~ 1.5 7 (0.66) d 
Na+(H2Oh Na,O(7,312,t ) 149 33 50K tetrah. ~ 9.7 45 (3.75) d 
Na+(H20)4 Na,O(7,3 [ 2,1) 149 33 50K planar ~ 7.0 
Na+ (H20)6 Na, O(7,3 [ 2,1) 211 47 65K octah. ~ 24.5 129 (10.75) d 
C4NH5 C,N(7,314,2) I40 60 50K exp 3t.0 26(15.7) ~ 

(Pyrrole) H(312) 
N20  4 N, O(8,414,2 ) 192 60 50K exp 55.0 - -  
N204 N(8,4,1 I4,2,1) 230 70 65K exp 127.0 - -  

O(8,414.2) 
C4N3OH5 C,N,O(7,312,1) 215 45 65K exp 174 212 (16.9) a 

(Cytosin) H(3I 1) 

a In 36 bit words. 
b UNIVAC 1108 CPU-times, double precision floating point arithmetic is used throughout. The cut 

off threshold, see text, was set at T = 10- 7. All times are given in minutes. 
~ An N a - O  distance of 5.25 a.u. was used. The terms linear, tetrahedral, planar and octahedral refer 

to the geometrical arrangement of the oxygen atoms surrounding the Na § ion. 
Ref. [2], for a better comparison we have multiplied the original IBM 3601195 times, which are given 
in paranthesis, by a conversion factor 12. 
Ref. 1-10], the original times, given in paranthesis, are multiplied by a single precision - double 
precision conversion factor 1.66. 
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tigated guaranteed that Esc F is in error by 2.10 -6 a.u. at most. Clementi claims 
the same accuracy for his program [2]. 

c) In the present program we have used one symmetry operation to avoid 
the computation of redundant integrals whereas Clementi does not. If one wishes 
to correct for this fact one should multiply the times in column 7 by an average 
factor of 1.7, except for the cytosin molecule where no redundancy on symmetry 
grounds occurs, as far as integrals over groups are concerned. (We do not take 
advantage of the fact that integrals over lobes are identical by symmetry.) 

Our pyrrole computation is compared with that of Alml6f [10]. Alml6f's 
program combines some features of the program developed by Hehre et al. [11] 
with a sophisticated handling of molecular symmetry and an efficient check on 
the magnitude of integrals to avoid the computation of small integrals. Alml6f 
does not discuss the accuracy of his program, but since he uses single precision 
arithmetic the absolute accuracy is 10 -6  at most. 

As can be seen from Table 2, the integral time is not just a function of the 
number of Gaussian lobes involved but depends strongly on the interatomic 
distances, the orbital exponents t /and  on molecular and local symmetries since 
all these facts have a marked influence on the number of integrals to be actually 
evaluated. 

Further Processing of Two-Electron Integrals 

The further processing of two-electron integrals in the SCF or correlation 
energy computation is always based on the use of the corresponding Roothaan 
supermatrix [8]. It is the main advantage of the idea of Meyer (to obtain the 
integrals in the specific order described above) that the various supermatrices 
can be computed in an easy way, since the matrix elements with lanes (I J, KL), 
(IK, JL), and (IL, JK) of any of the supermatrices are just linear combinations 
of the corresponding three integrals. 

For the closed shell SCF computation we first construct the ~-matrix. From 
the three integrals (IJ[KL),  ( IKIJL)  and ( ILIJK)  we get the corresponding 
~-matrix elements according to 

~U,KL = [4(IJ]KL) - ( IKIJL)  -- (ILIJK)] (1 -- 1/2 6U,KL), 

i f J > K :  

~I~r = [4(IK]JL) - ( IJ IKL)  - (ILIJK)] (1 -- 1/2 61r,sL), 

i f I > J  and K > L :  

~z,~,JK = E4(ILIJK) - ( IJ IKL)  - (IK[JL)] (1 - 1/2 61L,jK), 

where 6u,rr. is unity if I = K and J = L and zero otherwise (note that always 
I>_J>_K>_L). 

We keep only those elements of the ~-matrix which are larger in absolute 
value than the cut off threshold T introduced above. The combined indices 
( I J ) - I .  ( I - 1 ) / 2  + J  and (KL) are stored on tape or disc together with the 
corresponding supermatrix element. 
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Table 3. Typical CPU-times for further processing of integrals 
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Molecule c Number  of Storage CPU-time a for Average pair Comment 

groups (36 bit words) ~-matrix one SCF-iteration correlation b 

C2H 2 40 50K 0.1 0.1 0.9 
CzH 4 50 50K 0.5 0.4 3.0 
N + (H20)4 33 50K 0.08 0.07 - -  
N + (H20)4 33 50K 0.06 0.06 - -  
N+ (HzO)6 47 65K 0.26 0.22 - -  
N 2 0  4 60 50K 1.0 0.75 6.0 
N204 70 65K 1.6 1.2 11.0 
Cytosin 45 65K 0.34 0.28 - 
Pyrrole 60 50K 1.2 0.9 - 

tetrahedral 
planar 

a Times are given in minutes and refer to 
metic is used. 

b See text. 
c See also Table 2. 

the UNIVAC 1108, double precesion floating point arith- 

The construction of the Fock operator F is now extremely easy since any 
N-matrix element gives just two contributions to the Fock operator F: 

~Ij,rL. D(KL) to F(IJ) 
and 

~IJ,KL" D(IJ) to F(KL), 

where D denotes the density matrix stored in triangular form which, in an obvious 
notation, is defined as 

D(IJ) = ~ C,MCjM(1 -- 1/2 6i,s). 
M 

In Table 3 we collect for some typical examples the CPU time required to con- 
struct the ~-matrix from the integral tape. 

Timings for the construction of the f -  or X-matrix are virtually identical, 
of course. We further give the time per SCF iteration which is essentially the 
time required to get the F-matrix. It should be noted that we did not use sym- 
metry properties to speed up the computation of the supermatrices or the Fock 
operator. 

The program allows also for the computation of correlation energies within 
the IEPA-PNO method (IEPA = Independent Electron Pair Approximation, 
PNO = Pair Natural Orbitals) described in Ref. [12], for a recent review see [13]. 
The computation of the pair correlation functions and energies is based on the 
direct calculation of the PNO's of the corresponding two-electron function, which 
guarantees optimum convergence properties of the CI expansion. The direct 
computation of the PNO's, i.e. prior to the knowledge of the pair function, can 
be performed according to a method proposed by Kutzelnigg [14]. Recently 
even faster and more accurate procedures have been developed for this purpose 
[15, 16]. 

In order to perform the IEPA-PNO computation we construct successively 
the f - ,  Y+-, and o~f--supermatrices to obtain the corresponding Coulomb and 
exchange operators required, see [12]. As the details of the integral handling is 
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analogous to the one explained for the ~-supermatrix and the SCF-computation 
a further explanation is not necessary. In Table 3 we give the typical CPU-time 
required to obtain one pair correlation function and the corresponding pair cor- 
relation energy with the present program. The number of PNO's included (10-25) 
is always chosen large enough to account for at least 98 % of the corresponding 
correlation energy contributions obtainable within the respective basis set. We 
note that between 7% and 20% of the times reported are used to obtain the 
PNO's, the remainder is required to set up the pair CI-matrix. 

The IEPA does not obey the variational principle. We note, however, that 
a variational treatment following the IEPA, like e.g. a PNO-CI first proposed 
by Meyer [-15], requires little additional computertime [-17], since all tedious 
CI-matrix elements have already been computed in the IEPA-part. 

Discussion 

We have shown in the present paper that the evaluation of two-electron 
integrals over contracted Gaussian lobe functions of medium size basis sets (up 
to about 300 lobes contracted to up to 80 groups) can be performed within reason- 
able computer times with rather modest storage requirements (50-65 K 36-bit 
words for the double precision version of the program) with a rather simple 
program. We have further demonstrated that the additional steps of an ab initio 
computation - like SCF iterations, computation of correlation energies - usually 
require only a rather small fraction of the CPU time necessary to obtain the 
two-electron integrals. 

Finally, let us discuss some features of the present program in connection 
with some other programs described in the literature. The basic structure of the 
integral routine is a straight-forward coding of Eq. (2). The performance is in- 
creased by a very simple but efficient checking system which determines at every 
stage whether or not subsequent loops may be skipped. 

Three kinds of tests are made for this purpose: 
a) parity check to avoid the computation of zeros, 
b) symmetry check to avoid the computation of redundant integrals over 

groups, 
c) check on the magnitude of integrals to avoid the evaluation of small con- 

tributions to the corresponding integrals. 
The realization of the latter point as described above is an essentially novel 

feature of the present program. Symmetry is exploited in a much more sophisti- 
cated way in other programs, like Polyatom [t8], Reflect [-19] or Alml6fs pro- 
gram [10]. These programs should thus be faster than the present one for highly 
symmetric molecules. 

We do not take advantage of symmetry in the construction of the super- 
matrices and in the construction of Fock, Coulomb or exchange operators from 
the supermatrices. The corresponding CPU times are relatively small, however, 
usually 1-2% of the integral computation time, see Tables 2, 3. The total CPU 
time can thus not be decreased significantly by further exploitation of symmetry. 
If the correlation energy computation is based on localized SCF MO's rather 
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than on the canonical ones, one has to deal with density matrices which are not 
invariant under symmetry operations and symmetry is of little or no help in this 
case anyway as far as the processing of integrals is concerned. 

If the localized valence shell SCF MO's are equivalent on symmetry grounds, 
as e.g. in CH4, one can, of course, exploit this equivalency to simplify the 
computation of correlation energy [17]. 
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